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Abstract

It is well known that the generalization capability is one of the most important criterions to develop and evaluate a classifier for a given
pattern classification problem. The localized generalization error model (Rgjs) recently proposed by Ng et al. [Localized generalization error
and its application to RBFNN training, in: Proceedings of the International Conference on Machine Learning and Cybernetics, China, 2005;
Image classification with the use of radial basis function neural networks and the minimization of the localized generalization error, Pattern
Recognition 40(1) (2007) 4-18] provides a more intuitive look at the generalization error. Although Rgj; gives a brand-new method to promote
the generalization performance, it is in nature equivalent to another type of regularization. In this paper, we first prove the essential relationship
between Rg)s and regularization, and demonstrate that the stochastic sensitivity measure in Rgys exactly corresponds to a regularizing term.
Then, we develop a new generalization error bound from the regularization viewpoint, which is inspired by the proved relationship between
Rg)s and regularization. Moreover, we derive a new regularization method, called as locality regularization (LR), from the bound. Different
from the existing regularization methods which artificially and externally append the regularizing term in order to smooth the solution, LR
is naturally and internally deduced from the defined expected risk functional and calculated by employing locality information. Through
combining with spectral graph theory, LR introduces the local structure information of the samples into the regularizing term and further
improves the generalization capability. In contrast with Rgs, which is relatively sensitive to the different sampling of the samples, LR uses the
discrete k-neighborhood rather than the common continuous Q-neighborhood in Rgys to differentiate the relative position of different training
samples automatically and avoid the complex computation of Q for various classifiers. Furthermore, LR uses the regularization parameter to
control the trade-off between the training accuracy and the classifier stability. Experimental results on artificial and real world problems show
that LR yields better generalization capability than both Rgjs and some traditional regularization methods.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A classifier design method is usually an algorithm that de-
velops a classifier f to approximate an unknown input—output
mapping function F from finitely available data, i.e., training
samples. Once such a classifier has been elaborately designed,
it can be used to predict the class labels corresponding to un-
seen samples. Hence, the goal of developing a good classifier
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is to ensure the high prediction accuracy, i.e., generalization
capability, for future unseen data [1].

Specifically, for a given pattern classification prob-
lem, the training samples, i.e., a set of input—output pairs
T = {(x;, yi)}7_,, are generated according to a fixed but un-
known probability distribution P (x), where y; is the class label
of the input x;. The classifier f can be developed by minimizing
the empirical risk on the training samples

1 n
Remp = — 3 (i = f0))”. (1)

i=1

The quality of f produced by a specific design method is mea-
sured by the discrepancy between the true output produced by
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the mapping function F and the estimated value produced by f
for unseen samples. The expected value of the discrepancy is
defined as the generalization error [2]

Rgen =/ (F(x) — f(x))*dP(x), 2)
I\T

where II denotes the entire input space.

Many techniques have been proposed to improve generaliza-
tion capability for the classifier design. Regularization method
was presented originally by Tikhonov [3,4] for solving ill-posed
problem. The basic idea of regularization is to stabilize and
smooth the solution by means of some auxiliary nonnegative
functional that embeds prior information about the solution [5].
The quantity to be minimized in regularization method is the
Tikhonov functional, including both the empirical risk func-
tional and the regularizing term, which are connected with a
regularization parameter. Through optimizing the parameter, a
satisfactory balance can be achieved between the training ac-
curacy (bias) and the classifier complexity (variance) to gain
good generalization capability [6]. An alternative method to
promote generalization performance is cross validation (CV).
In CV, the training dataset is randomly split into k disjoint sub-
sets. A classifier is trained for k times on stochastic k — 1 sub-
sets and a subset is left out as the validation set to be used for
estimating the generalization error at the same time [7]. Finally,
the classifier with the lowest average estimated risk is cho-
sen. However, CV is heuristic and cannot guarantee the clas-
sifier to have good generalization performance in every case
[7-9]. Moreover, the computational cost of CV grows linearly
with the number of samples and often becomes intolerable for
practical application [9]. In addition, early stopping is another
widely used technique to improve the generalization capability
because it is simple to understand and implement. Just as CV,
it splits the training data into a training set and a validation
set, and stops training as soon as some stopping criterions be-
ing achieved in the validation set [10,11]. However, the method
is also heuristic in nature and it is easy to prematurely stop
at the local minimum. How to choose a proper stopping crite-
rion is a key issue in the technique. Furthermore, as an alter-
native major approach, Vapnik—Chervonenkis (VC) theory [1]
provides analytical generalization bounds that can be used for
estimating generalization error by defining a new measure of
complexity, called as the VC-dimension, which coincides with
the number of parameters for linear classifier [9]. However,
VC-theory cannot be rigorously applied to nonlinear classifiers,
such as neural networks, where the VC-dimension cannot be
accurately estimated and the empirical risk cannot be reliably
minimized [8,9].

Different from the above state-of-the-art methods, the local-
ized generalization error model (Rgys) recently proposed by
Ng et al. [2,12] provides a new look at the generalization error,
although it has not received sufficient attention yet. Rgps is
illuminated by the classifiers such as support vector machine
(SVM) [13], radial basis function neural network (RBFNN)
[5] and multilayer perceptron neural network (MLPNN) [5],
which are really local learning machines and consider the

unseen samples close to the training samples more important
[2]. Hence, in Rgy, the generalization error for unseen samples
is bounded within a Q-neighborhood of the training samples us-
ing stochastic sensitivity measure [14—16], i.e., the expectation
of the squared output perturbation. And the Q-neighborhood
is designed to be the regular shape, such as a hyper-square, a
sphere or a rectangle. Accordingly, a model selection method
based on Rgy has been presented to train RBFNN [2]. For a
given threshold, the method selects the optimal classifier by
maximizing the value of Q, assuming that the mean square error
(MSE) of all samples within the union of all Q-neighborhoods,
including the training and testing samples, is smaller than the
threshold [2]. The resulting RBFNN has better testing accu-
racy, fewer hidden neurons and less training time than the ones
trained respectively using multiple folds CV and sequential
learning. In addition, Rgps can also be generalized to feature
selection [17], active learning [18], multiple classifier systems
[19], image classification [12], and so on.

Although Rg)s seems to provide a brand-new method to pro-
mote the generalization performance, in this paper, we will
first prove the important relationship between Rgjs and reg-
ularization, i.e., it is in nature another type of regularization,
and demonstrate that the stochastic sensitivity measure in Rgy
exactly corresponds to a regularizing term. Moreover, Rgy
controls the generalization error for unseen samples through
maximizing the Q-neighborhoods of training samples, which
requires the Q-neighborhoods share common shape. However,
in practice, Rgy can guarantee neither unseen samples always
residing within the limited union of Q-neighborhoods, nor thus
the comparable generalization performance for these samples.
In order to tackle the above problem, we further develop a
new generalization error bound from the regularization view-
point, which is inspired by the proved relationship between
Rgy and regularization. Moreover, we derive a new regular-
ization method, called as locality regularization (LR), from the
bound. Instead of optimizing Q, LR seeks for the classifier
function f(x) which minimizes a quasi-Tikhonov functional
directly on the basis of selecting a proper regularization pa-
rameter, just as in traditional regularization [5]. However, dif-
ferent from the existing regularization methods [5,6] which
artificially and externally append the regularizing term in or-
der to smooth the solution, LR is naturally and internally de-
duced from the defined expected risk functional following Rg ;.
Furthermore, LR calculates the regularizing term by employ-
ing locally variable k-neighborhood rather than the common
continuous Q-neighborhood in Rgys such that it cannot only
differentiate the relative position of different training samples
automatically and avoid the complex computation of Q for vari-
ous classifiers, but also further improve the generalization capa-
bility. Therefore, LR, on one hand, has the common advantage
of traditional regularization method that can achieve a trade-off
between the training accuracy and the classifier stability [6],
which leads to the resulting classifier more stable than Rgys in
terms of the different sampling of the samples. On the other
hand, thanks to the introduction of the local structure infor-
mation of the samples into the regularizing term through com-
bining with spectral graph theory [20], LR yields more likely
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better generalization performance than traditional regulariza-
tion method.

The rest of this paper is organized as follows. Section 2
briefly reviews the basic theory of Rgps. In Section 3, we
prove the relationship between Rgys and regularization, and
give the corresponding deduction. The new generalization er-
ror bound and the corresponding regularization method LR are
proposed in Section 4. Section 5 shows some experimental re-
sults to demonstrate the better generalization performance of
our method. Some conclusions are given in Section 6.

2. The localized generalization error model (Rgjy)

Let Sg) denotes the Q-neighborhood of a training sample

x® . And Sg’) is defined as Sg’) = {x =x® 4 Ax} that fulfils
0<|Ax;|<Q,Vi=1,..., N, where N denotes the number of
features of the training sample and Ax = (Axy, ..., Axy) [17].
Then Sgp denotes the union of all Sg’), called as Q-Union.

Rsy is defined as the generalization error for the un-
seen samples, i.e., expected risk, within the Q-Union. With
probabilityl — 5, we have

Rsm(Q) = /S (f(¥) — F(x))*p(x) dx
0

n

1
<= |, (F@—F@)?

n
p=1"50

1

(2Q)N dx+e¢

<[/ Remp+y Es(AN)+AP+e = Ry (0). ()

Following [2], the notations in Eq. (3) are explained as follows:

(1) Remp = 1/nY p_(err®)? is the usual empirical risk,
where err® = f(x(b)) — F(x(b)).

() E;((Ay)*) = 1/nY fS$> (Ay)? p(x) dx is the stochastic
sensitivity measure, where Ay = f(x) — f(x®) is the

output perturbation which measures the output difference
between the training sample x*) € T and unseen sample

in its Q-neighborhood x =x® + Ax € SS’).

3) A= (max(F(x)) —min(F(x))), ¢ = B\/Inn(—2n), where
B =max((f(x) — F(x))?). Both A and ¢ are constants for
a given training dataset and a pre-selected upper bound of
the classifier output values.

For RBFNN, with probabilityl — 1, we have

2

M M
1 0.2
Riy = | | 302D vt QN 3Lty ReanptV/A
j=1 j=1

+e, “

where v; = ¢, (3L (03, + (g, — ui))/v)), & = 0;/v},
detailed in Ref. [2].

Therefore, for a given threshold p, i.e., R;M = p, the
value Q can be computed by solving the following quadratic
equation [2]:

02 M -
0 TNZCJ +0% ) v
j=1 j=1
—3(J/p =& = y/Remp — VA)* =0. (5)

There are maximum four solutions for Eq. (5) and the smallest
real solution will be used as final result [2,17].

In a word, for the trained classifier whose concrete func-
tional form is known, one could compute the maximum value
of Q and the value indicates the coverage of the unseen sam-
ples whose generalization error in MSE is less than p [2,16].
So if two classifiers yield the same R§,,(Q) with different Q
values respectively, the one that yields the larger Q has better
generalization performance.

3. The relationship between Rgj; and regularization

In this section, we reveal that the Rgj, is actually another type
of regularization method and the stochastic sensitivity measure
corresponds to a generalized regularizing term.

We assume that the unknown learning classifier function
f(x) belongs to a specified reproducing kernel Hilbert space
(RKHS) H [21,22]. Let us denote the reproducing kernel of a
functional Hilbert space H by K (x,x’). We will employ the
following kernel model:

fo) =Y 2K, x), 6)

i=1

where {o;}7_, are parameters to be estimated from the training
examples.

Theorem 1. If f (x) belongs to H, then the stochastic sensitivity
measure in Rgy is equivalent to a generalized regularizing
term, i.e.,

Es(Ay)*) = cllallgs 7

where o = [o, ...,oc,,]T, K is a symmetric and positive
semi-definite matrix depending on the training samples
x; i=1,...,n),and c is a constant.

Proof. We apply Eq. (6) in the stochastic sensitivity measure.
Note that, here we also define that the shape of Q-neighborhood
is a hyper-square just as in Ref. [2] for convenience. Then
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we have

l n
Ef(Ay))==3" fs oy AY)?p(x) dx
b=1""0

1< 1
”bzlfsg[f(x) T gy

- o 2/ [Z“K(x(mmxl)

—ZaiK(x“’),xi)} d(Ax)

-0 2/ {Z%[K(x(h)ﬂxxl)

2
—K(x“’),xi)]} d(Ax)

_
2o)Vn

" 0
x Y al { / QK;,(Ax)Kb(Ax)T d(Ax)} a (8)

where Kp (Ax) =[K x® +Ax, x))— K x®? x1), ..., Kx® +
Ax,x,) — K@x® x,)]".
To simplify the expression, let
_ 0
KO — / Ky (AOK, (A)T d(Ax). ©)
-0

Obviously, K® is a symmetric and positive semi-definite ma-
trix. And Eq. (8) can be rewritten as the following form of a
generalized regularizing term

ZT

where K=1/nY"}_ , K®. Obviously K is also a symmetric and
positive semi-definite matrix and [|4| g denotes the weighted
norm whose norm weighting matrix is K. Let ¢ = 1/20o)V.
This proves the theorem. [

E;(Ay)®) =

(2Q)N (ZQ)N Il

Corollary 1. If the reproducing kernel K (x,x") is chosen as
the linear kernel, i.e.,

f@) =) wxlx (10)
i=1

then
N Q2 2

E((Ay)*) = =107, (1)

where D is a linear differential operator, defined as D =0/0x.

Proof. We apply Eq. (10) in the stochastic sensitivity measure.
Then we have

Es(Ay)%)

1 n
=3 [ e = )Pt ax
nYsy

Z / [Za X 4 Ax)

(2Q)N

2
— Z oxlx (”)] d(Ax)

T
(ZQ)N Z

xlTAx
0
X al f (AxTx; AxTx,)d(Ax) | a
-0 :
x' Ax
1 n
T 20)n? Z
0 xTAxAxTx 1 xTAxAxTxn
x ol / : : d(Ax)
e xF AxAxTx xTAxAxTx,
X o. (12)

It is well known that the matrix-valued function integral
is equivalent to the integral to each element of the matrix
[23], i.e.,

0 0
/QA<Ax>d(Ax>= (/Qa,-j(Axm(Ax)), (13)

where the integral denotes N-fold multiple integral.
Hence, we have

0
/ QxiTAxAxTx jd(Ax)

0 Ax% coo o AxiAxy
=x] f A
—2 AxnvA Ax2
xnAxy Xy
We compute the integral to each element respectively, and
obtain

d(Ax) | xj. (14)

(0]
/ Ax,'Ax/' d(Ax)
x—Q
N HAN+2
O[Sy dde =22 i)
QN2 [9) Axi d(Ax) [9) Axjd(Ax)) =0, i # ).
(15)
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Therefore,

o 2N QN+2
/ x] AxAxTx; d(Ax) = ———x]x;. (16)
-0 3 X
From the above deduction, we can obtain
02 xfxl xTxn
Es(Ay)*) = Sl o e

T

T
X, X X, Xy

Q2 n n
= — OC,'xiT : o X

3

i=1 i=l1

n 2
E o X
i=1

Q2
— 3

Q2

== |Df|>,
5 ID1l

where D is a linear differential operator, defined as D= aa; O

Eq. (11)is actually the standard form of a regularizing term in
Tikhonov regularization theory [5,6]. Here we select the linear
kernel as an example for convenience. The reproducing kernel
can also be taken as different kernels, such as polynomial kernel
and Gaussian kernel, and in terms of Theorem 1, we can draw
similar conclusions corresponding to the different kernels.

In summary, Rgy belongs to the framework of the regu-
larization method. However, different from traditional regular-
ization which considers the smoothness of the solution from
the global view, Rgys focuses on the smoothness in each local
Q-neighborhood of the training samples. The stochastic sensi-
tivity measure measures the expectation of the squares of output
perturbations between the training samples and unseen samples
in the corresponding Q-neighborhoods [2]. Therefore, it can
penalize the large output perturbation and guarantee that sim-
ilar inputs correspond to similar outputs. For considering gen-
eralization error in every local neighborhood, Rgys has much
better generalization performance than some existing methods
[2] and provides us a brand-new viewpoint to improve the reg-
ularization method.

4. A new locality regularization method (LR)

Rsy selects the optimal classifier through maximizing the
value of Q in the condition that the generalization error is
smaller than a pre-selected threshold p. To obtain a high-order
equation w.r.t. Q which is easy to solve, the concrete functional
form of the trained classifier must be known and the shape of
Q-neighborhood should be regular. This puts a severe limitation
on the applicability of Rgjs. Moreover, when unseen samples
reside in the limited Q-Union, Rgys can ensure the good gen-
eralization capability for these samples. However, once unseen
samples reside outside the union, it cannot guarantee the com-
parable generalization performance again. In order to tackle the
above problems, we further develop a new generalization er-
ror bound which is inspired by the proved relationship between

Rgy and regularization. Furthermore, we derive a new regular-
ization method, called as LR, from minimizing the bound. In-
stead of optimizing Q, we seek for the classifier function f(x)
which minimizes a quasi-Tikhonov functional directly on the
basis of selecting a proper regularization parameter.

In the framework of regularization, the trained classifier func-
tion is often required to belong to RKHS and has a general
form [5] as follows:

n
f&) =" wiK (x;,x).
i=1

In fact, we only know the values of f at a finite number of
points in practice. Furthermore, though Rgjs can compute the
value of Q by solving a quadratic equation for RBFNN, as we
mentioned in Section 2, it is difficult for Rgys to obtain such
equation for various classifiers. As a result, the computation
of Q will become more complex and even unworkable. So, in-
stead of searching the continuous Q neighborhood, we search
the k nearest neighbors of every training sample x;. In other
words, here we consider the discrete version of the problem.
Combining with class label information, we can increase the
value of k until a sample whose label is different from x; will
reside in the neighborhood. Thus the size of the neighborhood
is variable to different training samples. If x; is far away from
the boundary between classes, the corresponding neighborhood
is relatively larger and includes more samples within the same
class. On the other hand, if x; is near the boundary, the neigh-
borhood is shrinkable to avoid including the samples with dif-
ferent class labels. Therefore, the value of k can differentiate
the relative position of different training samples automatically
and make for further improvement to generalization capability
of the trained classifier.

One important principle of regularization is the smoothness
of the solution, in the sense that similar inputs correspond to
similar outputs [5,6]. For classification problems, it means that
if two samples are close to each other, they should share the
same label. Therefore, it is reasonable to calculate the regu-
larizing term with locality preserving property. We construct
a nearest neighbor graph G to model the locally geometrical
structure of the samples. Let S be the weight matrix of G. A
possible definition of S is as follows [24,25]:

e—lxi—x;1%/1
if x; is among the k nearest neighbors of x;, (17)

or x; is among the k nearest neighbors of x;;
0 otherwise,

S,’j =

where ¢ is a suitable constant and the function exp(—|x; —
X 2/1) is called as heat kernel [26]. Note that, the above defi-
nition reflects the intrinsic manifold structure of the data space.

Recall that in Rgys, the generalization error is bounded in
the Q-Union:

Rsu(Q) = /s (f () = F(x))* p(x) dx
0

<LV Remp + 1 Es(AY)H) + AP 4+ e = R%,,(0),

where A and ¢ are constants for a given classification problem.
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Inspired by the relationship between R, and regularization,
we further deduce a new generalization error bound as described
below, which introduces the local structure information of the
samples into the bound.

Theorem 2 (Generalization error bound). Let H denote the
RKHS. For random probability distribution P (x) generating the
training input-output pairs T = {(x;, y;)}i_,, with probability
1 — n, the generalization error of random classifier f € H is
no more than

2

1~ o =,
—Z[mTKi—yi]2+)v alK'a+A| +e,
n

i=1

err(f)<

(18)

where Iei =[Kx1, %), ..., K@xn,x)], K isa symmetric and
positive semi-definite matrix depending on x; (i =1,...,n),
and A is the regularization parameter.

Proof. As we mentioned above, firstly we employ the discrete
k-neighborhood rather than the continuous Q-neighborhood in
the stochastic sensitivity measure. And by spectral graph theory
[20], the distribution density p(x) on the k-neighborhoods can
be dlscretely estimated by the matrix D, where the ijth entry is
1Si .Hence, we have

E;(Ay)%)

= %; / » [re — re®)] peorax

n k

1 Shj
_ _ (b) 2 2oy
—nZ Z[f(x,) FaEP o
b=1 | j=1
1 n k n Sb
= — O(lK Xi, X OClK Xi, X (b) ]
n;_[Z(pZ( )] Do
= ]71 i=1
1 n k n 25
—_ . ) () bj
=21 {Za, | Kiox)—Kxiox )]} o
b=1 | j=l1 =
1 k Spi
=—Zch ZKb(Ax)Kb(Ax)T ! a, (19)
b=1
where K (Ax) = [K (x1,x;) — K(ep,x®), ..., K(x,. x;) —
K (xp, xO)IT.
As Theorem 1, we let
S,
K(b)—ZK/ (Ax)Kb(Ax)T bj (20)
j=1
and
- 1 o
K=-) K®» 21
n; 1)

then
Ey(Ay)») ="K o

In the regularization theory, the trade-off between the bias
and variance of the classifier can be achieved through adjusting
the regularization parameter A [5]. So here we introduce / into
the bound in order to make it more flexible. Referring to the
bound in Rgys, by the Hoeffding’s inequality [27], with prob-
ability 1 — 5, we have the new generalization error bound of f

(22)

2

1 & . =
—Z[aTKi —yiP+AWaTK'a+A| +e,
n

i=1

e;r(f)<

where Ki and / are defined as before. [

Consequently, we derive our new regularization method, LR,
from Theorem 2 through minimizing the generalization error
bound, which is equivalent to minimizing

(23)

Here it is necessary to point out that different in the two
aspects from the existing regularization methods, one is its
derivation, LR is actually naturally deduced from the defined
expected risk functional and calculated by employing locality
information. The other aspect is its form, as shown in Eq. (23),
though a bit formal difference from the standard regularization
formulation, LR still embodies the similar principle to stabilize
and smooth the solution, and further calibrate its generalization
ability. Hence, we abuse the terminology, i.e., quasi-Tikhonov
functional, here to denote Eq. (23). Similarly, the influence of
the regularizing term on the final solution is controlled by/.
Through selecting a proper value of 4, we can obtain an opti-
mal solution of Eq. (23) and the resulting classifier more likely
yields better generalization capability than Rgp; which only
considers the generalization error in the limited Q-Union. How-
ever, just as in the traditional regularization methods, the se-
lection of A in LR is difficult and time-consuming. Fortunately,
some improvements have been made in simplifying the com-
putation of 4 [28,29]. These techniques can also be employed
in LR.

5. Experiments

In this section, we test the effectiveness of LR for classifica-
tion. First of all, artificial problems are studied to evaluate the
generalization capability between LR and Rgjs in terms of the
different sampling of the testing samples. Then the classifica-
tion experiments on two real world databases are performed.
The first one is the partial UCI database, and the second one
is the Benchmark database! used in Ref. [30]. In all the ex-
periments, RBFNN is still used to demonstrate the use of Rgys
and the given threshold p is also selected as 0.25, just as in

I available at http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.
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Fig. 1. Testing samples almost all residing in the Q-Union of the training samples in the first artificial dataset in normal distribution.

Ref. [2]. In order to correspond to RBFNN, we choose the RBF
kernel as the reproducing kernel in LR. And following [5], we
select the regularization parameter A by CV in these experi-
ments. Furthermore, throughout the experiments, we adopt the
restarted Fletcher—Reeves conjugate gradient algorithm [31] to
solve the optimization problem (23) in LR.

5.1. Artificial problems

In this subsection, we compare LR and Rgj; on two different
artificial databases of binary class problems, corresponding to
the normal distribution and uniform distribution, respectively.
The objective of these experiments is to evaluate the general-
ization performances of LR and Rgys in terms of the different
distributions of the databases as well as testing samples.

5.1.1. Normal distribution

Normal distribution is the most common distribution of the
samples in real world problems. Many learning theory and al-
gorithms are derived on the premise that the patterns follow
the normal distribution. Therefore, here we firstly present an
artificial database in normal distribution. The database con-
tains two datasets in which each class contains 150 samples
and the samples are generated randomly from the bivariate nor-
mal distribution. The means in the two classes are [0, O] and
[1.75, 1.75], respectively, and the variance is uniform diag[1,1].
In the first dataset, we stochastically select 135 samples in re-
spective classes to combine the training set and take the re-
maining 30 samples as the testing set, in order to guarantee all
the testing samples reside in the Q-Union produced by the 270
training samples as far as possible. In contrast, in the second
dataset, we select 15 samples in each class as the training set
and consequently most of the remaining 270 testing samples

reside outside the Q-Union. Figs. 1 and 2 respectively illus-
trate the different distributions of the testing samples in the two
datasets, where the black squares around the training samples
denote the corresponding Q-Union.

Table 1 and 2 show the training and testing accuracies of the
two methods on the respective datasets. Compared the two ta-
bles, it is obvious that the testing accuracies of LR are much
better than that of Rgys in the both datasets. And the gap be-
tween the classification accuracies is much wider in the second
dataset than in the first dataset. This fact validates that when
the testing samples reside outside the Q-Union, Rgys cannot
guarantee the comparable generalization performance due to
the disadvantage of the construction of the regular Q-Union.

5.1.2. Uniform distribution

Uniform distribution is a bit difficult for pattern classifica-
tion than normal distribution. In practice, when we have no
prior knowledge of the distribution of the samples in real world,
sometimes we may assume that the samples follow the uni-
form distribution. So we give another artificial database in the
bivariate uniform distribution with fewer samples than in the
first artificial problem. The database also has two datasets. Each
dataset contains 50 samples in each class. Similarly to the first
artificial problem, in the first dataset we randomly choose 45
samples in each class as the training set and the remaining 10
samples as the testing set. In contrast, in the second dataset, we
select 10 samples to combine the training set and the remaining
90 samples as the testing set. Figs. 3 and 4 also respectively,
illustrate the different distribution of the testing samples in the
two datasets. Tables 3 and 4 show that the testing accuracies of
LR are still superior to Rgys on the two datasets in the uniform
distribution, which further validates our conclusion. Moreover,
although the training accuracies of the two methods are almost
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Fig. 2. Most of the testing samples residing outside the Q-Union in the second artificial dataset in normal distribution.

Table 1

Training and testing accuracy in the first artificial dataset in normal distribution
LR Rsm

Training accuracy 0.8741 0.8741

Testing accuracy 0.8667 0.8000

Table 2
Training and testing accuracy in the second artificial dataset in normal dis-
tribution

LR Rsum
Training accuracy 0.9000 0.8667
Testing accuracy 0.8963 0.7556

equivalent, Rgy, is apparently overfitting in the second dataset.
In contrast, since the training and testing accuracies of LR are
basically comparable, this does not appear in LR. Further, the
generalization capability of Rgys is much sensitive to the sam-
pling of the testing samples and thus the gap between the test-
ing accuracies between the two methods is also much wider in
the second dataset.

5.2. Experiments on partial UCI database

We choose six datasets, Iris, Sonar, Ionosphere, Wdbc,
Pid and Spambase, in the UCI database (the UCI Machine
Learning Repository) as examples, where for Iris, the second
class and the third class are selected for classification, just
because the two classes are linearly inseparable. As shown in
Table 5,in the six datasets, Iris is a small-scale one with

the amounts of samples between classes evenly, Sonar is
middle-scale one with a little uneven amounts, lonosphere
and Wdbc are a bit large-scale and more uneven, and Pid and
Spambase are more large-scale sets and the samples in each
class distribute more unevenly. We compare the classification
accuracy between LR and Rgj, in the six datasets with differ-
ent scales and distributions, respectively. For each dataset, we
divide the samples into two nonoverlapping parts: training and
testing sets. This is repeated 10 times to generate 10 indepen-
dent runs for each dataset. The testing set is treated as future
unseen samples.

We test LR and Rgy, in three different cases. Firstly, we se-
lect almost half of samples in each class respectively and com-
bine them as the training set. The remaining samples are taken
as the testing set. Table 6 shows that the average classification
accuracies of LR and Rgjys seem basically comparable in this
case. Although LR is superior to Rgys in five datasets, the gaps
between the accuracies are relatively small in these datasets ex-
cept for Ionosphere and Spambase, owing to the relatively even
sampling of the training and testing samples within classes.
The testing samples reside almost uniformly in the Q-Union in
Rspy. Hence Rgys can preserve good generalization capability
for these samples.

Secondly, we mix all the samples of two classes and stochas-
tically select almost half of samples as the training set. In this
circumstance, the training and testing samples within classes
are not sampled evenly again. As a result, some testing samples
may be outside the @-Union in Rgys. It likely influences the
generalization performance of Rgys. Table 7 shows the average
classification accuracies of the two methods in this case. As can
be seen, LR outperforms Rgys consistently in the six datasets.
A comparison between Tables 6 and 7 show that the classifi-
cation accuracies of Rgys seem to decrease relatively greatly.
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Fig. 4. Most of the testing samples residing outside the Q-Union in the second artificial dataset in uniform distribution.

In contrast, the classification accuracies of LR seem to be more
stable and coincidental to those in the first case basically.

In order to further demonstrate our conclusions, we perform
the 7-test on the classification results of the 10 runs in the above
two cases respectively, to calculate the statistical significance
of LR. The null hypothesis Hy demonstrates that there is no

significant difference between the mean number of patterns
correctly classified by LR and Rgy. If the hypothesis Hy of
each dataset is rejected at the 5% significance level, i.e., the
t-test value is more than 1.7341, the corresponding results in
Tables 6 and 7 will be denoted “*’. Consequently, compared
Table 6 with Table 7, it can be clearly found that the difference



1488 H. Xue et al. / Pattern Recognition 41 (2008) 1479— 1490

Table 3
Training and testing accuracy in the first artificial dataset in uniform distri-
bution

LR Rsm
Training accuracy 0.9667 0.9667
Testing accuracy 0.9000 0.8000

Table 4
Training and testing accuracy in the second artificial dataset in uniform
distribution

LR Rsm
Training accuracy 1 1
Testing accuracy 0.9889 0.7667

Table 5
The dimension and the respective class sizes of the 6 datasets in the UCI
database

Dataset Dimension Class I size Class II size
Iris 4 50 50

Sonar 60 97 111
Ionosphere 34 225 126

Wdbc 30 212 357

Pid 8 500 268
Spambase 57 2788 1813

Table 6

Average classification accuracy when the training and testing samples sampled
evenly

Dataset Classification accuracy
LR Rsm

Iris 0.9800 0.9780
Sonar 0.8357 0.8314
Tonosphere 09119 0.8480*
Wdbc 0.9447 0.9477
Pid 0.7596 0.7471*
Spambase 0.8609 0.7283*

“*” Denotes that the difference between LR and Rgys is significant at 5%
significance level, i.e., t-value > 1.7341.

Table 7
Average classification accuracy when the training and testing samples sampled
unevenly

Dataset Classification accuracy
LR Rsm

Iris 0.9820 0.8860*
Sonar 0.8154 0.5596"
Ionosphere 0.9080 0.7937*
Wdbc 0.9302 0.8951*
Pid 0.7427 0.6622*
Spambase 0.8457 0.6718*

Table 8
Training and testing accuracy in the biased Iris dataset

LR Rsm
Training accuracy 0.9400 1.0000
Testing accuracy 0.9800 0.7800

of generalization performance between LR and Rgjs is much
more significant in the second case than in the first one. This
just accords with our conclusions.

Finally, we test the generalization capability of the two meth-
ods in an extreme case on the Iris dataset. The reason that we
only consider Iris is the dimension of the other five datasets
is too high to be visualized. As we all know, the Iris dataset
contains four attributes of an iris. To visualize the problem we
restrict ourselves to the two features that contain the most infor-
mation about the classes, namely the petal length and the petal
width [32]. We randomly select 45 samples in the second class
and 5 samples in the third class as the training set. And the re-
maining samples are combined as the testing set. In Rgyy, the
computed value of Q is only close to 10™!°. Hence almost all
the testing samples are outside the O-Union. Table 8 shows the
training and testing accuracies of the two methods on the biased
dataset respectively. For Rgy, although the training accuracy is
100%, the testing accuracy is only 78%. So it apparently leads
to an overfitting tendency because the optimal Q value is now
almost equal to zero and thus the stochastic sensitivity measure
does not come to play in optimization. Consequently, the mini-
mization of the generalization error for Rgjys boils down to just
optimizing R.,;,. Hence, the value of Q cannot only determine
the generalization capacity of the classifier, but also be used to
explain whether the classifier is overfitting or not. In contrast,
LR is relatively stable on both accuracies and has much better
generalization performance in this extreme case. The discrim-
inant boundaries in Fig. 5 further validate our conclusion.

5.3. Experiments on Benchmark database

Furthermore, the Benchmark database [30] is also used in this
test, which consists of 13 datasets. These datasets all contain
two classes. We use the training and testing sets offered by the
database. Table 9 presents a brief description of these datasets,
which are typical sets that the training and testing samples are
sampled unevenly within classes. For Rgy has been verified
superior to multiple folds CV and sequential learning in Ref.
[2], in this experiment, we compare LR with Rgys, regular-
ization network (RN) [33,34], and three ad-hoc methods. RN
originates directly from the regularization theory. RBF func-
tion is chosen to be the activation function of the individual
hidden units in this network, corresponding to Rgys. Thanks to
the specific selection of the kernel function, RN is empirically
equivalent to SVM here [6,35,36]. The ad-hoc ‘min (k)’ and
‘max (k)’ methods are to fix the number of the nearest neigh-
bors which are equivalent to the minimal and maximal values
of k in the LR respectively. ‘k 4 1’ is the method that increases
the value of & until the neighborhood contains a sample whose
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Fig. 5. The classification discriminant boundaries in the biased Iris dataset.

Table 9
The dimension, training and testing set size of the 13 datasets in the Bench-
mark database

Dataset Dimension Training set size Testing set size
Banana 2 400 4900
B.-cancer 9 200 77
Diabetis 8 468 300
E.-Solar 9 666 400
German 20 700 300
Heart 13 170 100
Ringnorm 20 400 7000
Thyroid 5 140 75
Titanic 3 150 2051
Twonorm 20 400 7000
Waveform 21 400 4600
Image 18 1300 1010
Splice 60 1000 2175

label is different from x;. We perform independently repeatedly
100 runs and 20 runs, respectively for the first 11 datasets and
the last two datasets.

Experimental results in Table 10 indicate that LR outper-
forms Rgys consistently in almost all the datasets, just as in the
last subsection. And the t-test further demonstrates the signif-
icant superiority of LR to Rgjys, in terms of the classification
performance in these typical datasets in which the samples are
sampled unevenly in training. Furthermore, LR is also superior
to RN in most of the datasets, except for Thyroid and Image.
And the r-test shows that there is no significant difference be-
tween the two methods in the classification accuracies in the
two datasets in the statistical senses. As we can see from the

Table 10
Average classification accuracy for the testing set in the 13 datasets

Dataset Classification accuracy
LR Rsy RN min(k) max (k) k+1

Banana 09002 0.6768*  0.8790*  0.4470*  0.8852*  0.8869*
B.-cancer  0.7597 0.6909*  0.7156*  0.3065*  0.7338*  0.7403*
Diabetis 0.7697 0.7230*  0.7553*  0.3430* 0.7377" 0.7510*
F.-Solar 0.6800 0.6055*  0.6487*  0.5585*  0.6675*  0.6668*
German 0.7750  0.6947*  0.7693*  0.2993*  0.7347*  0.7457*
Heart 0.8490 0.7940*  0.7920*  0.4560*  0.8340*  0.8400*
Ringnorm  0.9856 0.9151*  0.9487*  0.4947* 0.8296*  0.8275*
Thyroid 0.9527  0.8920*  0.9573 0.3013*  0.9040*  0.9267*
Titanic 0.7794 0.7573* 0.7757*  0.3230*  0.7752* 0.7752*
Twonorm  0.9871 0.9704*  0.9668*  0.5004*  0.9786*  0.9786*
Waveform  0.9198 0.8189*  0.8958*  0.3295*  0.8834*  0.8874*
Image 0.9554  0.6796*  0.9587 0.5670*  0.8792*  0.9317*
Splice 0.8920 0.6960*  0.8859*  0.4787* 0.8273*  0.8292*

“** Denotes that the difference between LR and other methods is significant
at 5% significance level, i.e., -value > 1.7341.

table, ‘min (k)’ is obviously underfitting. And the classification
accuracies of ‘max (k)’ and ‘k + 1’ are both worse than LR
in all the datasets. The poor performance of the three ad-hoc
methods demonstrates that the way to generate the k nearest
neighbors in LR is the optimal option in practice.

6. Conclusion

In this paper, through proving the relationship between Ry
and regularization, we first develop a new generalization error
bound, and then derive a new regularization method, called as
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LR, from minimizing the bound. Different from traditional reg-
ularization methods, LR calculates the regularizing term based
on the local k-neighborhood of every training sample. Due
to combining the global and local structure information, LR
has better generalization performance. Besides, compared with
Rsuy, LR can achieve the trade-off between the training accu-
racy and the generalization capacity of the classifier, instead of
bounding the generalization error in the limited Q-Union. Fur-
thermore, LR applies a general form to all classifiers, which
is a linear combination of kernels, instead of a certain form
to a specific classifier. Hence LR can choose different kernels
based on various data distribution of different pattern classifi-
cation problems. The experimental results demonstrate that LR
is superior to Rgys in terms of generalization capability, espe-
cially in the case that training and testing samples are sampled
unevenly within classes.

LR is used in supervised learning in this paper. It can also
be generalized to semi-supervised learning and multiple ker-
nel learning. Furthermore, LR can be combined with manifold
learning. These issues will be our future research directions.
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